
www.manaraa.com

Social Visualization in Software
Development

Abstract
Most software development tools focus on supporting
the primary technical work – writing code, managing
requirements, filing bugs, etc. Yet with large teams,
managing the social aspects of a project can be as
complex as managing code. Here, we discuss the
iterative design of a visualization that helps developers
better understand the social aspects of their work.

Keywords
Social computing; visualization; prototyping; software
development

ACM Classification Keywords
H.5.3 Group and Organization Interfaces

Introduction
Many developers in large distributed teams feel
overwhelmed. Among other things, they see many
change requests (CRs) over the course of weeks – CRs
that are in good shape and CRs where the fix is
unclear, CRs that need to be examined to determine
their priority, CRs that are looking for someone to work
on them, CRs with proposed fixes that need to be
evaluated. One common concern with developers is
that they have forgotten about something important –

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montréal, Québec, Canada.

ACM 1-59593-298-4/06/0004.

Jason Ellis

IBM Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

USA

jasone@us.ibm.com

Catalina Danis

IBM Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

USA

danis@us.ibm.com

Christine Halverson

IBM Almaden Research Center

650 Harry Road

San Jose, CA 95120

USA

krys@us.ibm.com

Wendy Kellogg

IBM Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598

USA

wkellogg@us.ibm.com

www.manaraa.com

 2

they’ve lost track of change requests that will come
back and cause them significant grief in the future.

We saw an opportunity to address these concerns with
visualizations that give overviews of data contained but
not easily discerned in change tracking systems.
Visualizations, which provide quickly graspable views of
often complex data, might be able to help developers
better understand their world. This idea met with
significant interest from developers and managers on
large distributed teams at Lotus and Rational. Those
who worked on smaller teams saw less need for such a
tool. Small teams frequently depend on personal
communication to keep abreast of important issues.
Thus, our target audience became large distributed
software development teams.

Change Tracking Systems
Change tracking systems (sometimes called bug or
issue tracking systems) help developers manage and
prioritize their work. This is a highly social activity in
the sense that decisions regarding the management of
work are made through social interaction such as
debate, consensus, or managerial edict. It is an activity
that involves people in a variety of well-defined roles
from managers to developers to testers to
requirements writers, and so on.

For the discussion here, consider change tracking
systems to be repositories containing textual
descriptions of changes to software (defects, features,
etc.). These descriptions are called change requests
(CRs). Each CR features a detailed discussion
surrounded by additional attributes like who is assigned
to work on it, associated code, the current state of the

change, and much more. As such, each CR can be seen
as a kind of anchored discussion [2].

Change tracking systems are customizable and, thus,
support a variety of approaches to software
development. One increasingly common practice in
distributed software development projects involves
vetting a proposed fix prior to incorporating it into the
software. A developer devises a piece of code to
address the change request, then attaches it to that
change request so that it can be vetted and approved
by project managers. When the change is approved, it
is checked into the source code repository and the
associated CR is noted. As such, change tracking
systems are one of the central organizing mechanisms
in many software development projects. Popular
change tracking systems include Mozilla Bugzilla,
Rational ClearQuest, and IBM CMVC.

Method
Our design is based on five types of data: (1) E-mail-
based interviews with seven developers in multi-person
development projects at IBM Research and Apple, (2)
eleven face-to-face interviews with developers working
on large projects in Apple, Rational, Lotus, ibm.com,
IBM Research, and Mozilla, (3) analysis of functionality
in existing change tracking systems such as CMVC,
Bugzilla, and ClearQuest, (4) in-depth analysis of
specific change requests in Mozilla’s Bugzilla database,
and (5) numerous design documents produced through
the process of iterative design with stakeholders.

Initial Fieldwork
Based on analyses of the interview data, we compiled
the main issues programmers wanted help with.
Examples include: (1) a project overview that gives a

www.manaraa.com

 3

feeling for where new change requests are appearing,
who owns them, and where work is being concentrated,
(2) a better understanding of how long CRs have been
around as compared with their severity, (3) more
clarity on the workload of each developer past, present,
and future, and (4) a way to discover problematic
patterns, particularly situations where a CR is
repeatedly resolved and reopened or assigned and
reassigned. The remainder of this paper will focus on
this fourth problem.

figure 1. Simplified Mozilla Bugzilla state transition diagram

One of our interviewees in Lotus referred to the
assign/reassign pattern as the “ping-pong problem.”
He describes the problem this way: “In product, ping
pong is a serious issue – especially for large projects
across multiple sites. It’s of particular concern when
you’re dealing with multiple cultures and
understandings of English – things get complex in
terms of bug description and what has been done to
resolve the bugs. It’s too complicated to get this
information with current tools.” We provide more detail
on this problem in the following section.

Problematic Patterns
A state machine loosely governs how CRs move
through change tracking systems (see figure 1).
Transitions between states are generally not automatic,
instead requiring explicit human intervention to move a
CR from one state to another. In Mozilla’s Bugzilla
repository, the best-case path to resolution goes
through five states, but many other paths are possible
and some paths are indicative of problems [3]. For
instance, interviewees told us that CRs that are
repeatedly resolved and reopened or repeatedly
reassigned are worth looking into more deeply. A
resolve/reopen cycle could mean that there is
disagreement about what it means to fix a problem –
someone (perhaps several people) keep thinking the
CR has been addressed and others feel that it has not.
One way to think about this is as an argument. An
assign/reassign cycle, on the other hand, means that
the CR is not finding the right owner. Instead, each
assignee looks at the CR and decides that they aren’t
the right person to work on it. This could indicate a
number of problems including a structural problem in
the software or an organizational gap.

The history of these state changes along with data
about the people who made them can help us uncover
problematic patterns. However, getting this kind of
information from existing change tracking systems is
complex enough that interviewees reported it is seldom
done, if ever. In Bugzilla, one must follow these steps:

1. Use the query interface to find a CR of interest

2. Navigate to the CR’s history page. The history is
an (often) long date-ordered list of the modifications to
the CR in question. Most of these are likely not to be
related to the aforementioned problematic patterns

New

Assigned Resolved Verified

Unconfirmed

Reopened

www.manaraa.com

 4

3. Cut the CR history down to the specific
modifications needed to identify problematic patterns.
For the most part, this means throwing out everything
but the state changes

4. Read through the (often multi-paged) data and
decide if a problem exists

In CMVC, simply generating a CRs history is an expert-
level task involving multiple hand-written queries.
Thus, the design question becomes: Can we make
finding these patterns less difficult?

Design Evolution
Following our initial stakeholder interviews, we built
prototypes (not all discussed in this paper) to address a
variety of problems and did iteration with stakeholders
in Lotus and Rational using those prototypes in the
context of feedback interviews. The earlier prototypes
we developed gave an overview of the system at a
particular snapshot in time. This is useful for getting
an understanding of the current state of things – where
the action is today or what current severity levels are.
However, looking at a snapshot also misses some
important issues. For instance, if one looks at a
particular CR today, it might be assigned to someone
knowledgeable and be in a state that seems
appropriate for work to progress. However, a look at
the history of the CR may show that it has, in fact,
been assigned to numerous people over the past six
months. Or, that it has been resolved repeatedly, only
to be reopened. Or both. We respond to these issues
in the prototypes presented here.

Problematic Patterns Prototype 1
The starting point for our thinking about this prototype
was the Task Proxy [1], a visualization technique that
gives an overview of two-state (not finished/finished)

tasks in social context. The challenge we are
confronting in this paper is the meaningful display of
CRs, a significantly more complex task representation.

figure 2. Problem patterns prototype 1 with Mozilla data

The goals for this prototype were to (1) display only
portions of the CR history relevant to the patterns we
were trying to highlight and (2) display the entire
history as compactly as possible to facilitate quick
pattern recognition by users. To this end, we built a

www.manaraa.com

 5

visualization in Borland Delphi that lays out the state
changes for a number of CRs side-by-side. Showing
the state changes in this way provides for a compact
display of each CR’s history state-wise. Each state
change is represented by a box and colored based on
the kind of state change it is.

Following a round of feedback from stakeholders, we
refined the prototype by adjusting the state colors to
make it easier to detect patterns (see figure 2). We
used purples for the progression from unconfirmed to
assigned (where code is written) and greens for the
path from resolved to verified (where code is tested
and verified). The reopened state indicates a problem
in and of itself, so we made it stand out using a
brighter orange color. This iteration of the prototype
was the first to run against real data: CRs from
Mozilla’s Bugzilla database.

This prototype served as an initial proof of concept and
allowed us to share our ideas with stakeholders.
Feedback was largely positive, with the majority of
stakeholders asking when it would be available for use
against their change tracking data.

A significant new issue arose in these discussions as
well. While it is nice to be able to see a CR’s entire
state history in one compact display, where the display
gains in compactness it loses in specificity. For
instance, the prototype shows that reassign or
resolve/reopen cycles happened, but the only way to
find out when they happened is by mousing clicking on
each block. This is a problem because a CR may look
like it is exhibiting a problematic pattern but when we
take a more detailed look at its history, we find that the
problems happened years ago. At the same time, CRs

that do have recent problematic patterns become more
difficult to see because they are indistinguishable from
those that do not. Our second prototype was designed
to address this issue.

Problematic Patterns Prototype 2
Based on the above feedback, we chose to relax the
requirement of showing every state a CR has passed
through in favor of showing near-term history. We built
a new Java prototype that shows only the past year
(see figure 3). Each pixel going across the display is a
day, dark orange bars in the display are reassigns, and
green bars are when patches were provided (these are
code – proposed fixes for the CR). If the background is
orange, the CR is open and if it is white, the CR is
closed (resolved). Lastly, dark lines show any of the
myriad other types of operations that are done to CRs
(comments, people added to cc list, priority changed,
and so on). A higher bar means more of these
operations were done on the given day.

This approach gives stakeholders a better idea of time
with respect to the CR. Where the previous prototype
shows only that one event happened after the next,
this prototype allows users to see how temporally close
or distant these events are. For instance, users can
see that there were numerous resolve/reopen cycles for
a particular CR in the middle of the year but none
recently. Or, they might see that the CR and was
repeatedly reassigned over the past few months but a
patch was just recently supplied which means the CR
might be nearly resolved. Lastly, this design allows
stakeholders to see when a CR goes from high activity
to no activity, something that was not visible in the
previous prototypes (some call these CRs “zombies”).

www.manaraa.com

 6

This prototype shows similar problematic patterns when
run against both Mozilla and Eclipse data. Thus, this
approach has utility across at least two open source
projects. While we have not run the prototype against
corporate data, our partners in Rational and Lotus felt it
would have utility for them as well.

figure 3. Problem patterns prototype 2 with Eclipse data

Conclusion
Current change tracking systems are pregnant with
social data that can help developers better understand
and manage their work world. However, this data is
often hidden. In this paper, we have presented one
way to surface such data: visualizations of social
patterns in change requests. Making this data available
for use by developers has the potential to help them
better manage the social aspects of software
development, alongside more traditional practices.

As this work moves forward, we will continue doing
iterative design with stakeholders. We will explore
providing drill-down to allow users to investigate events
on the timeline in more detail. For instance, we hope
to provide the ability to see exactly which activities
compose the “other activity” bars as well as provide
more information on the events that are already called
out. We would like to make people more prominent by
showing who initiated each activity. For instance, a CR
might be shown to have been reassigned ten times in
the current visualization. Making who the CR passed
between clearer could allow users to see that
assignment was cycling between just two people, which
tells us something different if it were passing among a
larger group with few repeated names. We also plan to
use this visualization as a tool to uncover new classes
of problematic patterns that we can highlight alongside
the patterns we have shown here.

References
[1] Erickson, T., Huang, W., Danis, C. and Kellogg, W.
(2004). A Social Proxy for Distributed Tasks. CHI 2004.

[2] Guzdial, M. (1997). Information Ecology of
Collaborations in Educational Settings. CSCL 97.

[3] Mozilla Bugzilla Lifecycle
http://www.bugzilla.org/docs/2.18/html/lifecycle.html.

